21 research outputs found

    Learning Non-deterministic Representations with Energy-based Ensembles

    Full text link
    The goal of a generative model is to capture the distribution underlying the data, typically through latent variables. After training, these variables are often used as a new representation, more effective than the original features in a variety of learning tasks. However, the representations constructed by contemporary generative models are usually point-wise deterministic mappings from the original feature space. Thus, even with representations robust to class-specific transformations, statistically driven models trained on them would not be able to generalize when the labeled data is scarce. Inspired by the stochasticity of the synaptic connections in the brain, we introduce Energy-based Stochastic Ensembles. These ensembles can learn non-deterministic representations, i.e., mappings from the feature space to a family of distributions in the latent space. These mappings are encoded in a distribution over a (possibly infinite) collection of models. By conditionally sampling models from the ensemble, we obtain multiple representations for every input example and effectively augment the data. We propose an algorithm similar to contrastive divergence for training restricted Boltzmann stochastic ensembles. Finally, we demonstrate the concept of the stochastic representations on a synthetic dataset as well as test them in the one-shot learning scenario on MNIST.Comment: 9 pages, 3 figures, ICLR-15 workshop contributio

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware
    corecore